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Abstract-In engineering literature, the approximation E&) N ae+ is frequently used and the 
values of a and b are obtained by curve fitting. The values of a and b are shown to be related to the 
assumed angular distribution of intensity by using Rddington’s approximation. It is formally shown 
that E&) N 0.348 exp [- 1.1613?] + 0.652 exp [-2.941t] is equivalent to retaining the first four terms 
in the spherical harmonics expansion of intensity and the generalization of this procedure is indicated. 

NOMRNCLATURR 

ai, bf, constants in equation (19); 
A 
B,n’ 
c, 
I, 

5. 
P 

4Rn: 
UR , 
7, 

coefficients of Legendre polynomials; 
zo+) T4: integrated Plan&s func- 

velo;ity of light; 
intensity of thermal radiation; 
absorption coefficient; 
pressure of radiation; 
Legendre polynomials ; 
radiative energy flux in the positive 
x-direction ; 
radiative energy density; 
optical thickness. 

1. INTRODUCTION 

IN ONE-DIMENSIONAL radiation gas dynamics 
(RGD), the intensity of thermal radiation de- 
pends on position which is expressed non- 
dimensionally as optical thickness and the angle 
which the ray makes with the preferred direction. 
The energy flux, the energy density, and pressure 
of radiation are obtained as moments of in- 
tensity and are given by integral expressions 
involving the temperature of the whole flow 
field in the quasi-equilibrium transfer theory 
[ 1, 21. The latter two quantities are usually 
negligible compared with the corresponding 
mechanical quantities and the influence of 
radiation is felt through the flux of energy. The 
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energy equation of RGD becomes an integro- 
differential equation due to the radiation of flux 
term. 

The mathematical difficulties of working with 
the integral expressions have prompted a number 
of approximations which can be broadly classi- 
fied as (a) approximations based on the optical 
thickness of the medium and (b) approxima- 
tions on the angular distribution of intensity. 
Approximations of the first category, in general, 
simplify the flux term by reducing the integral 
expression to an expression depending on local 
properties only. The examples are the two 
asymptotic optically thin and optically thick 
cases [3]. The optical thickness, by definition, 
involves the absorption coefficient and the 
characteristic dimension of the medium so that 
asymptotic cases may arise in a number of 
physical situations but a wide range of optical 
thicknesses lies beyond their scope. In contrast, 
approximations based on angular distribution of 
intensity are not restricted by the optical 
thickness of the medium and they are discussed, 
for example, in the references [4-g]. 

In the one-dimensional flux expression, the 
angular dependence of intensity gives rise to the 
integro-exponential function ,5(t) which may be 
written as a sum of exponential functions 

Z ai exp [--bet]. 

Physically, this amounts to replacing the con- 
tinuous angular dependence by discrete direc- 
tional dependence. The first term in the sum is 
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usually used for simplicity, as an approximation, 
that is, Ez(t) 2: a exp [--bt] and the values of the 
constants a and b are found by curve fitting and 
by asymptotic considerations [IO]. In this work, 

dqR 
~~ = 4rrB - CUR 

d7. 

dPR 

(2) 

the value of the constants a and b is shown to be 
c-z-@ 

dr (3) 

related to the assumed angular distribution of 
intensity by using Eddington’s approximation Geometrically, Eddington’s approximation con- 

and by considering the differential equation sists of the following: 
satisfied by the flux of energy. In a formal 
manner, it is shown that the expansion Z(T, 0) = II for 0 < 0 < 7rj2 (4) 

C(t) = C ar exp [--bit] Z(T, 0) = 12 for n/2 < 19 < v (5) 

is equivalent to the spherical harmonics method. 
In particular, the first two terms in the expansion 
of Es(t) and the first four terms in spherical har- 
monics expansion lead to the same fourth order 
differential equation for flux and by comparison, 

Es(t) r 0.348 exp [-1613tJ 
+ 0.652 exp [-2.941 t] 

is obtained. The procedure used is easily 
generalized. 

2. EDDINGTON’S APPROXIMATION 

Assuming local thermodynamic equilibrium, 
the equation of radiative transfer for a gray gas 
is given by 

dl 
pd;=B-1 (1) 

where CL = cos 0 and T is the optical thickness, 
dr = k dx. Figure 1 shows the geometry for one- 
dimensional flux with the boundaries separated 
by an absorbing and emitting medium. If equa- 

Here 11 and 1s are functions of 7 but independent 
of 0. Using the relations (4) and (5), we can 
evaluate uR, qR, and PR as follows : 

qR = 
s 

/LLI dw = n(Zr - 12) 

4n 

pR=; Ps1dw=2;(1r+Js)=;R 
s 

47l 

(6) 

Equation (3) can now be written as 

c duR 
3 dr - -qR 

and combining this with equation (2), the flux 
qR satisfies 

d2qR = 3qR + 4 dB 
d? = dr (8) 

tion (1) is multiplied by dw (= 27r dp) and p dw 
and integrated over all the solid angles, then the 

Differential equations for uR and PR can be 

following exact relations are obtained. 
obtained similarly from equations (2) and (7). 

The same form of the differential equation is 
obtained if the flux is formulated as an integral 
and the approximation &(t) 2: a exp [--bt] is 

FIG. 1. One-dimensional radiative flux. 
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In writing the expression for flux transparent 
boundaries are assumed, but the results can be 
shown to be valid for radiating boundaries. By 
twice differentiating with respect to 7, we get 

d2qR dB 
p = b2qR + 4na TT 

Comparison of equations (8) and (9) shows that 
the particular values a = 1 and b = d3 corre- 
spond to Eddington’s approximation as far as 
flux is concerned. It is also seen that only these 
values of a and b provide the correct optically 
thin limit, namely (dgR/dT) = 4-n-B and the 
optically thick limit, qR = (4r/3)(dB/dT) for 
flux. A comparison of Be(t) N exp [--3&t] with 
the exact curve in Fig. 2 reveals the above 
qualitative features. 

There are other ways of obtaining Eddington’s 
approximation, for example, the spherical har- 
monics method. As noted by Milne [l, p. 1211, 
expansion of intensity in odd powers of cos 0 
alone will also lead to PR = ~73. However, the 
simple physical meaning is that isotropic radia- 
tion with different magnitudes of intensity in the 
positive and negative x-direction is incident on 
an area normal to the x-axis. The implicit 
assumption is that the angular distribution re- 
mains the same for all optical thicknesses. With 
this in mind, one can, in general, separate the 
variables T and 8: 

Z(T, 4 = h(T) F(P) 0 < 0 < rrr/2 

= 12(T) %4 a/2 < 0 < 57 (10) 

Physically, this means that the angular distri- 
bution of opposite fluxes is a curve of a general 
type and for F(p) = 1, Eddington’s approxima- 
tion is obtained. From the relations (lo), we 
get that UR and pR are related as 

That is, for any distribution F(p), we have 

b-Go1 

S Q) dcL 
0 

(11) 

The relation (11) shows that various values of b 
suggested curve fitting to Es(t) correspond to 
approximating the angular distribution suitably 
by a proper choice of F(p). Then the value of a 
may be obtained by asymptotic considerations; 
namely, a = 1 for the correct optically thin 
limit and a = b2/3 for the optically thick limit. 
We may also note that proper boundary con- 
ditions can be extracted once F(p) is chosen to 
suit the situation. This is a definite advantage 
over simple curve fitting. 

0 
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f 

FIG. 2. The exact function and exponential approximations of Ez(t). 
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3. EQUIVALENCE OF SPHERICAL HARMONICS 
METHOD AND EXPANSION OF INTEGRO- 

EXPONENTIAL FUNCTION h(r) 

The intensity of radiation can be expanded in 
terms of Legendre polynomials to take into 
account the general variation of intensity with 
optical thickness and the angle 0. For practical 
purposes, the series has to be terminated at some 
stage and the termination results in additional 
relations. For example, let [12] 

Z(T, p) = L .+ 
4?rL (2n + 1) An(r) P,(P) (12) 

lk=” 

Using the orthogonality relation, we get 

A, = J Z(T, CL> Z’,(P) dw 
477 

(13) 

Multiplying equation (1) by (2n + 1) P&L), using 
the recurrence relation and integrating over all 
the solid angles, we get 

(n$- l)%dgz+nd*; - en + 1) A, 

+ 47rBS0, (14) 

where 60, = 1 if n = 0 and 0 otherwise. 
Only the first three A’s have physical meaning 

and from equation (13) they are 

Ao(7) = J Z(T, CL) dw = CUR 
4rr 

7 

AI(~) = J d(~, d dw = qR 

I 

477 ’ (15) 
AZ(T) = ] Z(T, &&.G - &] dw = ScpR 

- ;“o, 1 

Writing the first two of the infinite set of 
equations (14) : 

dA1 
n=O: -=-Ao+~TB 

dr (16) 

n= 1: 2yT2+d$= - 3A1 (17) 

Termination of the series after the first two terms 
amounts to setting A2 = 0. From the last rela- 
tion of (15), and combining equations (16) and 
(17), we get 
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2s = 3pR 
d2A1 

and --- 
cl 7.2 

=3Ar+4$ 

These are the same as those obtained by Edding- 
ton’s approximation and have the physical 
meaning discussed previously. For higher 
approximations by retaining more terms in 
equation (12), the physical meaning gets obscure 
but higher order differential equations for flux 
are obtained. 

Terminating the series (12) after the fourth 
term by setting A4 = 0 and eliminating As and 
As between the equations obtained by n = 2 
and n = 3, we get 

d4A1 
__ - 10ds+yA1 -i+!3(~B) 
dr4 

35 d 
+9dr(4r#=0 (18) 

This equation was obtained by Traugott [ 1 l] by 
the moment method suggested by Krook [9]. 

An equation of the same type as (18) can be 
obtained in a formal way by writing 

-x 

E2(7) = 
c 

a$ exp [--+I (19) 
i=l 

and retaining the first two terms. 
By successive differentiation of qR with respect 

to T, and using equation (19), we get : 

d4 qR 

0 s 
-_ 
dr4 2~ 

= ’ B{albt exp [-ZQ(T - r)] 
0 

+ ae&exp[--b2(7 - t)]} dt 

- ‘I B(alb;l exp [--bt(t - T>] c 
J 

+ az%exp [--bz(t - T)]} & 

d3B 
f qa1 + u2+3 + 2(ulb; 
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Equation (20) can be simplified as follows: 

a@ exp [--bl(lt - +I 

+ a& exp [--b2(lt - ~[)l 

- P{albF exp [--bl(\t - T/)] 

I 

(21) 

+ u&2, exp [--bdlt - 71)1> 

+ Q@I exp I-bdjt - ~01 

+ m exp [--bdjt - ~j>l> J 
Here P and Q are constants and are evaluated by 
equating the coefficients of 

ai exp [-bdlt - ~j)l 

and 

a2 exp [-bz(lt - rj)]. 

The result is 

P=b;+b;; Q=-b;b; (22) 

Now the differential equation satisfied by the 
flux is 

d4qR 
d74 - (bf + b;) ‘g + bfb;qR 

da 
- (a1 + az)G3(474 + Ku1 + a2) 

(23) 

(b: + b;) - (a& + uzb;)] 

Comparing this equation with equation (18), 
they are seen to be of the same form and the 
constants al, ua, b2 can be evaluated. The result 
is 

al = 0.348 u2 = 0.652 b: = 1.35 

b; = 8.65 

1 

E2(T) N 0.348 exp [-1*1613~] 

+ O-652 exp [-2%1T] 1 

(24) 

Traugott [I I] evaluated Ea and Ed, using a gas 
slab with a linear distribution of B(t). His results 
are 

ES(T) = 0.2645 exp [-1-1612~1 

+ O-2355 exp [-2.94271 

Ed = 0.27 exp [-1*1612~] 

I 

(25) 

+ 0.0634 exp [-2’942T] 

In equations (24) and (25), it is seen that the 
exponents have the same value. Integration of 
Es(t) in equation (24) gives Es and Ed, but the 
numerical coefficients differ from those of 
equation (25). Equation (24) is plotted in Fig. 2 
and it is seen that two terms represent EL?(~) much 
better than one. 

The procedure of this section is easily gener- 
alized. By successive differentiation of equation 
(19) and depending on the number of terms 
retained, the algebraic procedure of equations 
(21) and (22) will lead to a differential equation 
for radiative flux. 
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R&urn&-Dans la litterature technique, l’approximation Ez(r) N a e-*r est frequemment utilisee et les 
valeurs de a et b sont obtenues par ajustage d’une courbe. On montre que les valeurs de a et b sont 
reliees a la distribution angulaire d’intensitt hypothetique en utilisant l’approximation d’Eddington. 
On montre analytiquement que l’expression Ez(t) ” 0,348 exp[- 1,1613r] + 0,652 exp[-2,94lt] 
revient a retenir les quatre premiers termes du developpement de l’intensite en harmoniques spheriques 

et l’on indique la generalisation de ce pro&de. 

Zusammenfassung-In der technischen Literatur wird hlufig die Nlherung &(t) N a e-bt verwendet 
und man erhalt die Werte a und b durch Kurvenanpassung. Durch Anwendung von Eddington’s 
NPherung wird die Beziehung der Werte a und b mit der angenommenen Winkelverteilung der 
Strahlungsdichte angegeben. Es wird gezeigt, dass der Ausdruck Er(r) Y 0,348 exp[--1,1613t] + 
0,652 exp[-2,94lt] der Beibehaltung der ersten vier Terme bei der kugelfiirmigen, harmonischen 
Ausbreitung der Strahlungsdichte gleichwertig ist ; auf die Verallgemeinerung dieses Verfahrens 

wird hingewiesen. 

,\HaoTaqnJr-B TexHaqecrio~inlzTepaType~acTo~lcnonb3yeTcRannpoIicIima~aRB~(t)~ ~e-"~, 

a3Haqt?HHFI UH b ~OJIyYaI0TI'paI#I4~eCKII. c rIOMO~bl0 arUIpOIWfMaI@U~ 3AALIHrTOHaBbIBeAeHa 

CBH3b Me~~y3Ha'IeHIIHMHuH bm npennonaraeMbIM yr~10~br~ pacnpeflenealre LiHTeHCMBHOCTLt. 

ffonasano, ~TO l%(t) 2: 0,348 exp [- 1,1613r] + 0,652 exp [- 2,94lr] panuo nepnna qerbrpe%r 
COXpaHFIKlIlJIIMCR YJIeHaM B pa3JIO~eHMM HHTeHCHBHOCTH IlO IIIapOBbIM rapMOHWIeCIEIfh1 

Q~HK~HRM,EZ E~S~BO~RTCH 0606ueHHe 3Toro npneMa. 


